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Grand-canonical transition-matrix Monte Carlo is combined with configurational-bias and expanded ensemble
Monte Carlo techniques to obtain saturated densities and vapor pressures of selectn-alkanes. Surface tension
values for butane, hexane, and octane are also computed via the finite-size scaling method of Binder. The
exponential-6 model of Errington and Panagiotopoulos is used to describe the molecular interactions. The
effect of the number of configurational-bias trial conformations on the efficiency of phase equilibra calculations
is studied. We find that a broad range of trial conformation numbers give reasonable performance, with the
optimal value increasing with decreasing temperature for a fixed chain length. Phase coexistence properties
are in good agreement with literature values and are obtained with very reasonable computing resources.
Similar to other recently developedn-alkane force fields, the exponential-6 model overestimates the surface
tension relative to experimental values. Statistical uncertainties for coexistence properties obtained with the
current approach are relatively small compared to existing methods.

I. Introduction

Hydrocarbons and their derivatives are abundant in nature.
These molecules are used in numerous chemical processes and
play an important role in many biological applications. Several
oils, fats, solvents, waxes, and paraffins consist of either
hydrocarbon molecules or species containing large hydrocarbon
units. In the chemical industry hydrocarbons are used as
feedstock in the production of petroleum, natural gas, and other
fuels. Hydrocarbons are also found in many personal care
products, such as moisturizers, makeup, and lip balm. Due to
the widespread use of hydrocarbons it is desirable to have a
rapid and precise means to evaluate their saturation and
interfacial properties.

The ability to calculate directly the phase diagram of
molecular models is perhaps one of the most important outcomes
of advances in molecular simulation techniques over the past
couple of decades. Improvements in computing power and
algorithms have made molecular simulation a very attractive
tool for calculating phase coexistence and other thermophysical
properties. Introduction of the Gibbs ensemble Monte Carlo
method (GEMC) by Panagiotopolous1 greatly enhanced our
ability to predict the phase behavior of real and model systems.
However, it was not until GEMC was combined with a biased
sampling scheme, configurational-bias,2-6 that the technique
could be used to evaluate the saturation properties ofn-alkane
chains of moderate length. One of the trial moves in GEMC
involves the exchange of particles between the vapor and liquid
phase. This particular trial move has a very low acceptance rate
for chain molecules since random insertion of a chain molecule
from a vapor to liquid phase almost always results in overlap.
As a result, a prohibitively large number of trial insertions are
required to correctly sample the coexisting phases of chain
systems. The configurational-bias Monte Carlo algorithm (CBMC)

was devised to explore configuration space more efficiently. In
this method, instead of random insertion, a molecule is grown
atom by atom, with multiple conformations examined for a given
atom, such that the probability of finding regions of favorable
energy is enhanced, and the likelihood of molecules overlapping
is reduced. Gibbs ensemble Monte Carlo in combination with
CBMC has been applied successfully to determine the coexist-
ence properties of many systems, including alkanes6,7 and
Lennard-Jones chains.8

Another algorithm, expanded ensemble Monte Carlo (EE-
MC),9 was also developed to overcome sampling difficulties
for long chains (e.g., polymers). In this approach, molecules
are gradually inserted and deleted through a series of intermedi-
ate states. At any given instance the system consists of any
number of completely grown molecules and at most one tagged
molecule that exists in one of the intermediate states. Trial
moves are performed to increase or decrease the length of the
tagged molecule until it is either completely added to or deleted
from the system. Escobedo and de Pablo demonstrated how to
implement this approach within the grand canonical ensemble
to determine thermophysical properties of chain systems.9

Considerable work has been completed to determine the
ability of various molecular models to accurately predict the
phase coexistence properties (saturated densities, vapor pres-
sures) ofn-alkane systems.10-15 Comparatively less attention
has been given to asses the ability of these models to correctly
predict surface tensions. Alejendre et al.16 have computed the
vapor-liquid surface tension ofn-hexane using both the de
Pablo et al.11 and SKS7 models. More recently, Nicolos and
Smit17 reported the surface tension of selectn-alkanes using
the OPLS10 and SKS12 force fields. Both of these research
groups performed molecular dynamics simulations with a slab
geometry18 to obtain surface tension estimates. In addition, both
groups modified the true force field by truncating and shifting
the potential at a given cutoff distance. Using this approach,
the authors found that model predictions underestimated the
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surface tension relative to experimental data. Goujon et al.19

performed a series of slab-based calculations using the TraPPE
model13 in which the long-range interactions were explicitly
accounted for. Their results indicated that the true TraPPE force
field slightly overestimates the surface tension ofn-pentane.

In previous work, one of us introduced a new method, grand-
canonical transition-matrix Monte Carlo (GC-TMMC),20 for
locating and characterizing fluid phase transitions. With this
approach, simulations are conducted in a standard grand
canonical ensemble where the volume, chemical potential, and
temperature are held constant and the particle number (density)
and energy fluctuate. During a simulation attempted transitions
between states of different density are monitored as opposed to
tracking the number of times the chain visits a given density as
is done in conventional simulations.21,22 At regular intervals
during a simulation, this information is used to obtain an
estimate of the density probability distribution, which is
subsequently used to bias the sampling23 to low probability
densities. Over time all densities of interest are sampled
adequately. The end result is an efficient self-adaptive method
for determining the density probability distribution over a
specified range of densities (typically a range that corresponds
to the densities of two potentially coexisting phases). Once a
probability distribution has been collected at a given value of
the chemical potential, histogram reweighting24 is used to shift
the probability distribution to other values of the chemical
potential. Phase coexistence is located when a chemical potential
is identified that produces equal areas under the peaks in a
bimodal density probability distribution.

In addition to the calculation of saturation pressures, densities,
and energies, grand-canonical Monte Carlo simulation can also
be combined with finite-size scaling methods to evaluate surface
tension values. This method does not require completion of the
often difficult task of establishing, equilibrating, and then
maintaining an interface, as is required in slab-based methods.
In the grand-canonical approach surface tension values are
calculated by using the finite-size scaling technique of Binder.25

In this formalism, apparent system-size-dependent interfacial
tensions are calculated for a range of system sizes, which are
subsequently used to extrapolate the infinite-system-size surface
tension through finite-size scaling. This approach has now been
applied to obtain the surface tension of various fluids.26-29

In this work we extend the application of GC-TMMC to
systems containing chain molecules. This task is accomplished
by combining GC-TMMC with CBMC and EEMC methods to
calculate phase coexistence properties and surface tension values
for normal alkanes. The number of trial orientations attempted
for each interaction site is a variable common to both the CBMC
and EEMC methods. Here, we investigate the effect of this
quantity on the rate of convergence of the density probability
distribution. The formalism of Binder has been used primarily
to obtain surface tensions for monatomic systems. The applica-
tion of this approach to molecular systems is studied here. In
particular, we examine the range of system sizes required to
accurately determine surface tension values. The rest of the
paper is organized as follows. Section II outlines the methods
used in this study. Section III describes the potential model and
outlines the simulation details. In section IV, we present the
results of our investigation, and we conclude in section V.

II. Methodology

We begin by reviewing the general GC-TMMC approach for
calculating phase coexistence properties and surface tension
values, and next describe how to incorporate configurational-

bias and expanded ensemble techniques into the scheme.
Simulations are conducted in a grand canonical ensemble in
which the chemical potentialµ, volumeV, and temperatureT
are kept fixed and particle numberN and energyU fluctuate.
The probabilityπ of observing a microstates with energyU
and particle numberN is

whereâ is the inverse temperature (â ) 1/kBT, kB is Boltzmann
factor),¥ is the grand partition function, andq(T) is the kinetic
contribution to the molecular partition function. The probability
Π(N) of observing a macrostate with a given number of
molecules (density) is given by

To obtain the probability distributionΠ(N) we employ a
transition matrix Monte Carlo scheme,21 with an N-dependent
sampling bias. The method monitors the acceptance probability
of attempted MC moves and subsequently uses this information
to calculate the macrostate transition probability matrix. For
every attempted move from a microstates to a microstatet,
regardless of whether the move is accepted, we update a
collection matrixC with the acceptance probabilitya(sft) )
min[1,πt/πs] as follows

and

whereN andM represent the macrostate labels for microstates
s and t, respectively. At any time during the simulation the
macrostate transition probability matrix can be obtained by
appropriately normalizing the collection matrix

To obtain the macrostate probabilities, we utilize the detailed
balance expression

For a grand-canonical simulation where transitions inN are such
that N f N, N f N + 1, andN f N - 1, the transition-
probability matrix P is tri-diagonal. In such conditions, a
sequential approach provides a suitable means for obtaining the
macrostate probabilities

At coexistence the macrostate probability distribution shows
two peaks as shown in Figure 1. The peaks correspond to stable
(or metastable) homogeneous phases and the intermediate-
density region corresponds to homogeneous or heterogeneous
configurations. As is suggested in Figure 1, obtaining a particle
number probability distribution over a range of densities that
includes liquid and vapor states requires sampling density
regions of low probability. To ensure adequate sampling of all

πs ) 1
¥

q(T)NsVNs

Ns!
exp[-â(Us - µNs)] (1)

Π(N) ) ∑
Ns)N

πs (2)

C(NfM) ) C(NfM) + a(sft)

C(NfN) ) C(NfN) + 1 - a(sft) (3)

P(NfM) )
C(NfM)

∑
O

C(NfO)

(4)

Π(N)P(NfM) ) Π(M)P(MfN)

ln Π(N+1) ) ln Π(N) - ln[P(N+1fN)

P(NfN+1)] (5)
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states we employ a multicanonical sampling23 scheme that
encourages the system to sample all densities with uniform
frequency. This procedure is implemented by assigning each
macrostate a weightη(N) that is inversely proportional to the
current estimate of its probability,η(N) ) -ln Π(N). Acceptance
criteria are modified to account for the bias as follows

whereη(N) andη(M) are weights corresponding to microstates
s andt, respectively. Note that the introduction of a weighting
function does not alter the mechanism through which the
collection matrix is updated. The unbiased acceptance prob-
ability is still used to update the collection matrix. This aspect
of the method provides an efficient and self-adaptive means to
determine the probability distribution by enabling one to
periodically update the weighting function without having to
discard previously obtained data in the collection matrix.

Simulations are completed at a specified value of the chemical
potential, which does not need to be particularly close to the
saturation value. To determine the phase-coexistence value of
the chemical potential, the histogram reweighting method of
Ferrenberg and Swendsen24 is used. This method enables one
to shift the probability distribution obtained from a simulation
at chemical potentialµo to a probability distribution correspond-
ing to a chemical potentialµ using the relation

To determine the coexistence chemical potential, we apply the
above relation to find the chemical potential that produces a
probability distributionΠc(N), where the areas under the vapor
and liquid regions are equal. Saturated densities are related to
the first moment of the vapor and liquid peaks of the coexistence
probability distribution. To calculate the saturation pressure we
use the expression

The interfacial free energyFL for a finite-size system with a
cell length ofL is determined from the maximum likelihood in
the liquid Πmax

l and vapor regionsΠmax
V and minimum likeli-

hood in the interface regionΠmin (see Figure 1),

From the formalism of Binder,25 the interfacial free energy of
a two-dimensional surface varies with system size according
to

whereγL is an apparent system-size-dependent surface tension,
γ∞ is the true infinite-system (L f ∞) interfacial tension, and
C1 andC2 are constants. The expression suggests that the group
âFL/2L2 becomes linear with the scaling variable ln(L)/L2 as
the system size approaches infinity. The method enables one
to evaluate the infinite-system interfacial tension by extrapolat-
ing a series of finite-system interfacial free energies.

We now examine how to include configurational-bias and
expanded ensemble techniques within the GC-TMMC frame-
work. The CBMC routine can be incorporated in a relatively
straightforward manner. We recognize that the TMMC algorithm
does not distinguish between elementary and advanced moves.
Rather, it requires only the acceptance probability between two
microstates involved in the trial move. For the case of CB-
GCMC, the acceptance probabilities for particle insertions and
deletions are given by30

where Rw is the Rosenbluth weight, which is calculated as
described by Frenkel and Smit.30

In expanded grand-canonical Monte Carlo the creation and
deletion of molecules is completed through a series of inter-
mediate stages. At any point during the simulation the system
consists of any number of completely grown molecules and at
most one partially grown molecule, referred to as the tagged
molecule. The tagged molecule keeps its label until it is grown
to a full molecule or completely eliminated. Within this approach
each intermediate state containing a partially grown molecule
is considered a unique macrostate. For a simulation designed
to obtain the particle number probability distribution between
zero andNmax particles, the number of macrostates is now
nNmax + 1, wheren is the number of steps required to grow a
complete molecule. As before, transitions are attempted that
move the system to one of two neighboring macrostates. For a
system containing a tagged molecule in theyth growth stage,
creation and deletion moves involve attempted transitions to
statesy + 1 andy - 1, respectively. The acceptance probability
for a move from statey to statey + ∆ is given by

where∆ is +1 for the growth process and-1 for the destruction
process,Ny is the total number of molecules in the system
including the tagged chain, andRw is the Rosenbluth weight.9

III. Model and Simulation Details

A united-atom approach is used to model then-alkane
molecules. We focus on the exponential-6 model of Errington
and Panagiotopoulos. Details related to other united-atom

Figure 1. Schematic of the particle number probability distribution at
vapor-liquid phase coexistence conditions.

aη(sft) ) min[1,
exp[η(M)]πt

exp[η(N)]πs
] (6)

ln Π(N; µ) ) ln Π(N; µo) + â(µ - µo)N (7)

âpV ) ln(∑
N

Πc(N)/Πc(0)) - ln(2) (8)

âFL ) 1
2
(ln Πmax

l + ln Πmax
V ) - ln Πmin (9)

âγL )
âFL

2L2
) C1

1

L2
+ C2

ln L

L2
+ âγ∞ (10)

a(NfN+1) ) min(1,
q(T)V exp(âµ)

(N + 1)
Rw(new))

a(NfN-1) ) min(1,
N

q(T)V exp(âµ)
1

Rw(old)) (11)

a(yfy+∆) ) min(1, (Rw)∆ exp(∆
n[âµ - ln

Ny

q(T)V])) (12)
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models discussed below can be found elsewhere. Nonbonded
site-site interactions are described with the modified Buck-
ingham exponential-6 intermolecular potential,15 for which pair
interaction energiesu vary with separation distancer as

whereε, rm, andR are adjustable parameters. The variablerm

is the radial distance at whichu(r) reaches a minimum and the
cutoff distancermax is the smallest radial distance for which
du/dr ) 0. The radial distance for whichu(r) ) 0 is denoted
by σ. The parametersε, σ, andR are 129.63 K, 3.679 Å, and
16, respectively, for the methyl group and 73.5 K, 4.00 Å, and
22, respectively, for the methylene group. Cross parameters are
determined by using the following combining rules,

The bond lengths CH3-CH3, CH3-CH2, and CH2-CH2 are
1.839 Å, 1.687 Å, and 1.535 Å, respectively. Bond bending
angles are generated according to the bending potential31

whereKθ ) 62500 K/rad2 andθeq ) 114°. Torsion angles are
generated according to the potential12

whereV0 ) 0, V1 ) 355.03 K,V2 ) - 68.19 K, andV3 )
791.32 K.

Simulations for calculating saturated densities and vapor
pressures are conducted with use of a single 1.0 GHz Pentium
III processor. The MC move distribution is as follows: 15%
particle displacement, 50% particle insertion/deletion, 15%
particle rotation, and 20% partial regrowth. Typical maximum
molecule numbers for these simulations span from around 150
(for dodecane) to 500 (for methane). Surface tension extrapola-
tions require relatively large system sizes. For these simulations
the largest systems considered contained a maximum of around
2200 molecules. To perform these calculations in an efficient
manner we take advantage of the fact that the TMMC algorithm
enables one to fill the overall collection matrix through a series
of independent simulations, each restricted to a limited range
of macrostate space. There are a variety of ways that one can
implement this parallelization in practice. In this work, we use
a scheme in which a series of semi-independent simultaneous
simulations sample overlapping windows in macrostate space
with periodic swapping of configurations between processors.
Further details can be found in ref 32, where this windowing
approach was used to determine the phase behavior of a fluid
interacting with a surface. While we feel that this approach is

reasonable, we recognize that the mechanism used to distribute
the workload between processors could be optimized further.
The issue of load balance among multiple processors is of
general interest for TMMC applications and would likely benefit
from further study.

IV. Results and Discussion

Appropriate selection of the number of configurational-bias
trial orientationsk can significantly improve the efficiency of
grand-canonical simulations. Here we investigate the effect of
k on the rate of convergence of the density probability
distribution. Phase coexistence calculations forn-octane at 400
and 500 K are taken as test cases. Two metrics are used to track
convergence. For the first measure, convergence is assessed by
examining the deviation between instantaneous and target
probability values for each element of the distribution. Multiple
runs are performed to obtain good statistics with the following
expression used to acquire an average result

where t is the elapsed CPU time,Π and Πtar are the
instantaneous and target density probability distributions nor-
malized to sum to unity,Mrun is the number of runs, andNmin

and Nmax are the minimum (zero in the present study) and
maximum number of particles sampled. Target probability
distributions are generated from 64 independent simulations with
a k value of 8.

To assess the influence of the number of trial orientations
on the rate of convergence, we performed a series of simulations
in which the value ofk was varied from 1 to 20. Simulations
were conducted with a volume ofV ) 40 000 Å3, using 1.0
GHz Pentium III processors. Results forRconvergenceas a function
of CPU time forT ) 500 K are displayed in Figure 2. The run
length was truncated at around 4000 min. We observe that for
k g 5 convergence is achieved satisfactorily within 400 min of
CPU time, whereas fork ) 1 and 2, 1300 and 2400 min of
simulation time are required, respectively. It is clear that the
use of configurational-bias significantly influences the rate of
convergence. The data indicate that the rate of convergence
remains relatively constant fork values above 5, suggesting that
one has fairly wide latitude in selecting an optimalk value at
this temperature.

u(r) ) { ε

1 - 6/R[6
R

exp(R[1 - r
rm]) - (rm

r )6] for r > rmax

∞ for r < rmax

(13)

σij ) 1
2
(σi + σj)

εij ) (εiεj)
1/2

Rij ) (RiRj)
1/2 (14)

ubend(θ) )
Kθ

2
(θ - θeq)

2 (15)

utor(φ) ) V0 +
V1

2
(1 + cosφ) +

V2

2
(1 - cos 2φ) +

V3

2
(1 + cos 3φ) (16)

Figure 2. Probability distribution convergence plot for octane atT )
500 K. The horizontal line indicates a target value for convergence.

Rconvergence(t) ) x 1

Mrun
∑
j)1

Mrun

∑
i)Nmin

Nmax

[ln Π(i,t) - ln Πtar(i)]
2

(17)
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The second metric used to track the rate of convergence of
the density probability distribution focuses on the evolution of
the pressure with simulation time. The pressure is related to
the zeroth moment of the probability distribution (see eq 8),
and therefore represents an aggregate property of the distribu-
tion. The metricRpressureis defined in terms of the difference
between an instantaneousP and targetPtar value of the pressure

The evolution ofRpressurewith CPU time for the samek values
examined above is displayed in Figure 3. The behavior is similar
to what we observed for the first metric, i.e., values ofk g 5
increase significantly simulation efficiency. Although differences
between thek ) 5, 10, and 15 data sets are small,k values of
5 and 10 seem to slightly outperform thek ) 15 case. However,
as indicated, these differences are relatively small and we again
find that a broad range fork values produces equivalent results.

It is well-known that temperature has a tremendous influence
on the rate with which a system evolves through configuration
space. To probe the effect of temperature on the optimal number
of configurational-bias trial orientations we monitored the same
metrics described above for phase equilibria calculations
conducted at a temperature ofT ) 400 K. Results forRconvergence

as a function of CPU time are displayed in Figure 4. It is evident
that ak value of 5 is no longer optimal. Fork values even lower
than 5, convergence requires considerably longer run times.
Relatively similar performance is found when using 10, 15, or
20 trial orientations, withk ) 10 producing the best result.
Analogous to the high-temperature case, a broad range ofk
values can be used to obtain phase coexistence data in an
efficient manner. Similar conclusions are obtained from an
analysis of the dependence ofRpressurewith CPU time. The two
test cases indicate thatk values of 5 or larger are preferable at
a reduced temperature of 0.88 and that 10 or more trial
orientations provide optimal convergence rates at a reduced
temperature of 0.70. Both test cases indicate that the rate of
convergence initially increases rapidly with increasing trial
orientations. This early period is followed by a weak maximum
in the convergence rate with increasingk values. Therefore,
when selecting the number of trial orientations for GC-TMMC
simulations one should error on the side of larger rather than
optimal k values.

After obtaining a sense of how the number of trial orientations
influences convergence rates, we used the GC-TMMC method

to determine phase coexistence properties for a wide range of
chain lengths. Saturated densities and vapor pressures for select
n-alkanes are displayed in Figures 5 and 6, respectively. A set
of coexistence calculations was completed for each molecule
with use of CB-GC-TMMC. For dodecane an additional series
of simulations was conducted with the EE-GC-TMMC method.
Results from the present study are in very good agreement with
the values of Errington and Panagiotopoulos.15 All phase
coexistence calculations were completed by using a single 1.0
GHz Pentium III processor and required less than 3 days of
simulation time. As one would expect, simulations involving
relatively short chains and/or relatively high temperatures
required considerably less time to complete. Four runs were
conducted at each state point to evaluate statistical uncertainties.
We found typical uncertainties of less than 1% for the saturated
densities and vapor pressures. These values are considerably
smaller than vapor pressure uncertainties commonly obtained
from Gibbs ensemble simulations.12

One of the advantageous aspects of the GC-TMMC method
is that it can be used in conjunction with finite-size scaling (FSS)

Figure 3. Absolute fractional difference between the instantaneous
and target pressure against the CPU time for octane atT ) 500 K. The
horizontal line indicates a target value for convergence.

Rpressure(t) )
1

Mrun
∑
j)1

Mrun |P(t) - Ptar|
Ptar

Figure 4. Probability distribution convergence plot for octane atT )
400 K. Details are equivalent to those for Figure 2.

Figure 5. Vapor-liquid coexistence envelope of selectn-alkanes. The
curves from bottom to top are for methane, ethane, butane, hexane,
octane, and dodecane. Solid lines represent literature values,15 filled
circles represents data obtained with CB-GC-TMMC, and open squares
represent data obtained with EE-GC-TMMC. Statistical uncertainties
are smaller than the symbol size.
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ideas proposed by Binder to produce a powerful means for
determining surface tension values. This approach is particularly
appealing at near-critical temperatures where slab-based methods
face difficulties in maintaining a stable interface. Recently, Singh
et al.27 have demonstrated the effectiveness of this technique
relative to alternative slab-based methods in which the pressure
tensor is evaluated either through the virial or volume perturba-
tion. The approach also benefits from the ease with which
calculations can be performed with parallel processing. For
example, this aspect of the method has proven to be useful when
working with anisotropic potentials.28,29The combined TMMC-
FSS method has been used to determine surface tension values
for Lennard-Jones,20 square-well,27 and model associating
fluids.28 In this work, we examine the suitability of this method
for obtaining surface tension values of chain molecules.

At the outset of the surface tension study, we performed a
series of calculations to comparen-alkane surface tension values
obtained from the TMMC-FSS method to those determined from
a traditional slab-based approach. We initially focused on a
system investigated by Nicolas and Smit.17 These authors
calculated surface tension values for hexane using a modified
SKS model.7 The force field was modified by truncating and
shifting the site-site interaction potential with a cutoff distance
of 13.8 Å. By modifying the potential in this manner, one does
not have to address the various issues related to the long-range
nature of the potential. Below, we examine the case in which
the full potential is used. Nicolas and Smit obtained surface
tension values by integrating the difference between normal and
tangential components of the pressure tensor over the axis
perpendicular to the interface. The pressure tensor was evaluated
by using the Irving and Kirkwood definition18 during molecular
dynamics simulations. In Figure 7 we present our apparent size-
dependent surface tension estimates as a function of the scaling
variable at temperatures of 350, 400, and 450 K. These values
are extrapolated to the infinite-system limit and compared with
the values of Nicolas and Smit. At temperatures of 350 and
450 K, values from the two methods are in very good agreement.
At the intermediate temperature of 400 K, the TMMC-FSS result
is just outside the uncertainty bounds of the slab-based calcula-
tion. However, we feel that our result at 400 K is reasonable,

in that it is in good agreement with the value one obtains from
a linear interpolation of the slab-based results at 350 and
450 K. One of the noticeable differences between the two
methods is the magnitude of the uncertainty in the calculated
interfacial tension. Typical uncertainties for values obtained with
the slab-based approach are around 10%, whereas those for
values generated from the TMMC-FSS method are under 2%.

To obtain a better understanding of the role long-range
interactions play in evaluation of the surface tension, we next
examined the interfacial properties of an alkane system previ-
ously studied by Goujon et al.19 These authors performed a
number of slab-based calculations with the TraPPE model for
n-pentane in which the potential cutoff distance and system size
were varied. Similar to Nicolas and Smit’s work, the pressure
tensor was evaluated by using the Irving and Kirkwood
definition; however, Goujon et al. implemented Monte Carlo
instead of molecular dynamics simulations to sample configu-
ration space. In the present study, we examine how true surface
tension values obtained from the TMMC-FSS method evolve
with the potential cutoff distance. Apparent surface tension
values are calculated with system sizes ofL ) 50, 60, and 70
Å for several cutoff distances, and these data are subsequently
used to extract true surface tensions. Data obtained from this
procedure are displayed in Figure 8, along with the values
obtained by Goujon et al. It is clear that the cutoff distance has
a significant impact on the interfacial tension. The results
indicate that the magnitude of the surface tension decreases with
increasing cutoff distance, with the estimates eventually con-
verging to a common value. For cutoff distances of 20 Å
(approximately five alkane segment diameters) and larger, one
obtains a surface tension value that is within 3.5% of the value
generated with the maximum possible cutoff distance (half the
box length). True surface tension values obtained with a
relatively large cutoff distance are also in good agreement with
the slab-based results of Goujon et al. The data suggest that
the TMMC-FSS method can be used to produce surface tension

Figure 6. Vapor pressure of selectn-alkanes. The curves from right
to left are for methane, ethane, butane, hexane, octane, and dodecane.
Symbols are the same as in Figure 5.

Figure 7. Apparent surface tension values of modified SKS hexane
as a function of the scaling variable. The soild symbols represent
system-size-dependent TMMC-FSS results and the open symbols
correspond to slab-based values from Nicolas and Smit.17 The lines
provide an extrapolation of TMMC-FSS data to the infinite-system limit,
with the solid line indicating those points that were used in the
extrapolation, and the dotted line representing an extension of the
extrapolation to smaller system sizes.

1374 J. Phys. Chem. B, Vol. 110, No. 3, 2006 Singh and Errington



values, which are consistent with slab-based approaches, for
molecular models that contain long-range interactions.

One of the objectives of the current study was to determine
the range of system sizes required for accurate determination
of surface tensions for model chain systems. In previous work
with atomistic systems, we found that apparent surface tension
values scaled linearly with the scaling variable for system sizes
of approximatelyL ) 9σ and larger.20,33 In these studies,
extrapolations were performed with data collected from three
to five systems with cell dimensions between roughlyL ) 9σ
and 14σ. This range of system sizes corresponds to a maximum
number of particles that spans from approximately 600 to 2000.
On the basis of the data presented in Figures 7 and 8, it appears
that one needs to consider a similar maximum particle number
range for the relatively short chain systems examined here. For
example, the finite-size scaling for SKSn-hexane at 400 K was
completed by using three system sizes withNmax values of 864,
1358, and 2012.

Depending on the level of accuracy one is interested in, a
full finite-size scaling analysis may not be required at all
temperatures. Similar to what was found for the atomistic
case,20,33we find that the magnitude of the slope of the scaling
line increases with increasing temperature. Stated differently,
the fractional difference between an apparent surface tension
value calculated with a given system size and the true
extrapolated value increases with the saturation temperature. As
an illustrative example, consider the scaling for SKSn-hexane,
for which the fractional difference between the apparentL )
60 (Nmax ∼ 850) and the true surface tension value increases
from 1% to 14% as the temperature increases from 350 to 450
K. This result suggests that one can obtain surface tensions at
relatively low reduced temperatures that are accurate to within
a few percent without performing a full finite-size scaling
analysis. For example, by simply using the apparentL ) 60
value for the surface tension of SKSn-hexane at 350 K, one
would underestimate the surface tension by just 1%.

Finally, we examine the ability of the Errington and Pana-
giotopoulos exponential-6 model to accurately describe the

interfacial tension of selectn-alkanes. Model predictions and
experimental data34 for the surface tension ofn-butane,n-
hexane, andn-octane are displayed in Figure 9. Results for
butane, hexane, and octane were obtained by scaling three
apparent surface tension values evaluated with system sizes of
(50, 60, 70), (55, 65, 75), and (65, 75, 85) Å, respectively. All
apparent surface tensions were calculated by using a potential
cutoff distance of 25 Å. It is clear that the exponential-6 model
overestimates the surface tension. The average deviation
between model and experimental points is 26%. For comparison,
data for the TraPPEn-pentane model at 400 K presented in
Figure 8 correspond to a surface tension of 5.79 mN/m, which
is 13% larger than the experimental value. This deviation is
consistent with those reported by Goujon et al.19 for the TraPPE
n-pentane model at other temperatures.

V. Conclusion

We have studied the applicability of grand-canonical transi-
tion-matrix Monte Carlo for determining phase coexistence
properties of normal alkanes. Configurational-bias Monte Carlo
and expanded ensemble techniques were combined with the
original GC-TMMC formalism to produce an efficient and self-
adaptive method for evaluating thermophysical properties. We
found that when using this method saturation properties were
generated to within 1% uncertainty, and that the values were in
good agreement with literature values. In addition, CPU time
requirements were reasonable in all cases. Studies aimed at
understanding the optimal number of configurational-bias trial
orientations (k) indicated that the rate of convergence of the
density probability distribution initially increases rapidly with
k, after which one observes a weak maximum in the convergence
rate upon further increasingk. As one would expect, the optimal
value ofk increases with decreasing temperature.

Surface tension values for a number of alkane systems were
calculated through a combination of GC-TMMC and finite-size
scaling. Our results indicate that interfacial tensions determined
by using this method are consistent with estimates obtained
through traditional slab-based approaches. Moreover, the com-
bined TMMC-FSS technique appears to produce surface tensions
with much smaller uncertainties than traditional methods. A
study aimed at determining the influence of the potential cutoff
distance on the surface tension indicated that interfacial tension
estimates initially decrease with an increase in the cutoff

Figure 8. Apparent surface tension values for TraPPE hexane at 400
K as a function of the scaling variable. Open symbols represent system-
size-dependent values obtained by applying the TMMC-FSS approach
with various cutoff distances. The filled squares correspond to values
obtained by Goujon et al.19 from slab-based calculations, with each
point representing a unique system size-cutoff distance combination.

Figure 9. The surface tension of butane, hexane, and octane plotted
as a function of temperature. Lines represent experimental values34 and
symbols represent predictions from the exponential-6 model.

Evaluation of the Saturation Properties ofn-Alkanes J. Phys. Chem. B, Vol. 110, No. 3, 20061375



distance, with values converging to a consistent value at large
enough cutoff distances. Although convergence is eventually
obtained, the cutoff distances required are considerably larger
than those typically employed in “standard” simulations.
Certainly, a future investigation targeted toward identifying more
efficient methods for calculating long-range interactions within
the TMMC-FSS framework would be beneficial. Finally, surface
tensions forn-butane,n-hexane, andn-octane were calculated
with the exponential-6 model and compared with experimental
data. Our results indicate that model predications overestimate
the surface tension. Similar calculations with the TraPPE force
field suggest that this model also overestimates the surface
tension, but does so to a lesser extent than the exponential-6
model.
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